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Abstract
We study the behaviour of charge oscillations in superconducting Cooper pair
boxes weakly interacting with an environment. We found that, due to the noise
and dissipation induced by the environment, the stability properties of these
nanodevices differ according to whether the charge oscillations are interpreted
as an effect of macroscopic quantum coherence, or semiclassically in terms of
the Gross–Pitaevskii equation. More specifically, occupation number states,
used in the quantum interpretation of the oscillations, are found to be much
more unstable than coherent ones, typical of the semiclassical explanation.

PACS numbers: 03.65.Yz, 03.75.Gg, 03.75.Lm, 85.25.Cp

1. Introduction

Low-capacitance Josephson-junction devices have recently attracted a wide interest, both
theoretically and experimentally, particularly in view of the possibility of identifying
macroscopic quantum phenomena in their behaviour. In this respect, one of the circuits
that have gained great attention is the so-called superconducting Cooper pair box (SCB), with
an increasing number of experiments aimed at supporting a qubit interpretation of its evolution
(e.g., see [1–5]).

The SCB is a circuit consisting of two superconducting electrodes linked through a
Josephson junction and coupled, capacitively, to a voltage source. One of the superconducting
electrodes is assumed to be small enough for the charging energy to play the main role. In
this situation, there is the possibility of tunnelling electrons one by one through the Josephson
junction, allowing for external control of charge oscillations [1–7] . Because of the large
number of Cooper pairs in the two electrodes, these oscillations have been interpreted as
genuine (macroscopic) manifestation of quantum coherence. Nevertheless, the experimental
data allow for an equivalent explanation of the oscillations in terms of a semiclassical behaviour
of the system. Two different theoretical scenarios can then be used in modelling the observed
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charge oscillations: one is the so-called quantum phase model [8, 9] that essentially describes
a quantized nonlinear harmonic oscillator, while the other is a mean-field model that leads to
a Gross–Pitaevskii like equation [10, 11]; the quantum phase model describes the system in
terms of occupation number (Fock) states, on the other hand, in the mean-field formulations
coherent-like states naturally appear.

More in general, the difficulties for a distinction between classical and quantum behaviour
in Josephson-junction based devices have been pointed out before in [12–14] . There, it is
shown that classical nonlinear-oscillator-like models can reproduce some experimental results
that have been previously attributed to genuine quantum macroscopic behaviour.

In the present work, we limit our consideration to the SCB charge oscillations and address
the problem of discriminating between their quantum and classical behaviour from an open
quantum systems perspective, i.e. when the SCB is immersed in a weakly coupled external
environment. In this case, the SCB dynamics is no longer unitary; instead, it is described
by a generalized evolution of semigroup type (a so-called quantum dynamical semigroup),
that incorporates effects of dissipation and decoherence induced by the environment
[15–18]. More specifically, we will focus our attention on the stability properties of the
system against the induced environmental noise. A preliminary investigation on this issue
has been reported in [19], using the so-called singular coupling limit [20], corresponding to
a specific environment, with stochastic or white noise correlations. Here instead, we shall
consider a generic environment and study the SCB stability properties in the weak coupling
limit [21], a procedure that implements in a physically consistent way the weak interaction of
the SCB with the environment.

The main point of our investigation is that any coupling with an external environment
needs a microspic description: only in this case one can derive a master equation valid in any
physical situation [16]. Once a general master equation is obtained, the choice between the
two possible explanations of the observed SCB charge oscillations depends on the stability
against noise of the states on which the two different models are based. In this respect, our
approach differs for instance from the one in [22] which assumes the validity of the quantum
phase model and describes the interaction with the environment by means of a spin-boson
model.

We found that although both quantum phase and mean-field models predict decoherence,
they give rise to quite different decay properties: occupation number states (used in the former
model) turn out to be much less stable than coherent ones (typical of the latter), thus confirming
the results of [19]. Therefore, the measure of the decay rate of the SCB charge oscillations in
presence of noise would in principle allow us to discriminate between the two models.

2. SCB oscillations: two approaches

In a suitable regime and in absence of the environment, the dynamics of a SCB can be effectively
modelled by a Bose–Hubbard Hamiltonian [23, 24] (henceforth, the small electrode will be
labelled by L, while the other much bigger one by R); in terms of bosonic creation and
annihilation operators â

†
i , âi , i = L,R in the two electrodes, one can write

H0 = EC

(
â
†
LâL

)2
+ ULâ

†
LâL + URâ

†
RâR − K

(
â
†
LâR + âLâ

†
R

)
, (1)

where the quadratic term EC

(
â
†
LâL

)2
accounts for Coulomb repulsion in the small island

(the one in the much larger electrode R can be neglected), Uiâ
†
i âi , i = L,R, are potential

contributions, while the last one is the tunnelling term.
Due to the conservation of charge in the SCB, the Hamiltonian (1) must be restricted to the

subspace with a constant total number of particles N = nL +nR . Two effective descriptions of
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the dynamics of the SCB can then be obtained, the quantum phase model and the mean-field
one.

In the former case, the relevant states are occupation number (Fock) states with a constant
total number of particles

|n〉 ≡ |nL = n, nR = N − n〉 = 1√
n!(N − n)!

(
â
†
L

)n(
â
†
R

)N−n|vac〉, (2)

where |vac〉 is the vacuum state. Ignoring a constant term, the Hamiltonian in (1) can be
rewritten as

H0 = EC(n̂L − n̄ − ng)
2 − K

(
â
†
LâR + âLâ

†
R

)
, (3)

where n̂L = â
†
LâL is the number operator in electrode L, while n̄ is the corresponding average

number; in typical experimental situations, one has n̄ ≈ 108 [1–5] . Thus, the difference
n̂′ ≡ n̂L − n̄ measures the excess of Cooper pairs (hence of charge) in the same electrode.
The parameter ng = (UR − UL)/2EC − n̄ is connected with the potential energy difference
across the Josephson junction, or equivalently with the average charge in the gate capacitor,
and it can be controlled externally through the voltage source.

In the occupation number representation, the Hamiltonian (3) takes the form

H0 = EC

N∑
n=0

(n − n̄ − ng)
2|n〉〈n| − EJ

N∑
n=0

(|n〉〈n + 1| + |n + 1〉〈n|), (4)

where we have set K
√

(n + 1)(N − n) � K
√

n(N − n) ≡ EJ since we are interested in low
lying states, for which |n − n| ≡ |n′| � n. Introducing the conjugated operators n̂′ and ϕ̂,
obeying the canonical commutation relations, [ϕ̂, n̂′] = i, so that e±iϕ̂ decrease (increase) n′

by 1, the expression in (4) is equivalent to the so-called quantum phase model Hamiltonian
[8, 9]

H0 = EC(n̂′ − ng)
2 − EJ cos ϕ̂. (5)

By adjusting the gate voltage so that ng ≈ 1/2, one enters a particular situation (resonance)
where only the occupation number states |n〉 = |n′ + n̄〉 for which n′ = 0 and n′ = 1 play a
role and are strongly coupled by the Josephson junction. In this case, the Hamiltonian (4) can
then be approximated by a two-level Hamiltonian

Ĥeff = − 1
2 [EC(1 − 2ng)σZ + EJ σX], (6)

where σX and σZ are Pauli matrices. The effective two-level system will thus display coherent
oscillation with frequencies given by

ωq = �E =
√

E2
C(1 − 2ng)2 + E2

J ≈ EJ , (7)

where the expression in the middle has been approximated to EJ because we are working
close to resonance.

A different description of the system can be given by treating the starting microscopic
Hamiltonian (1) in a mean-field approach. This approximation is justified by the large number
of Cooper pairs in the two electrodes, all in the same condensed state. This situation can be
properly described by the product of N single Cooper pair states

|�〉N = 1√
N !

(
ψLâ

†
L + ψRâ

†
R

)N |vac〉 =
N∑

n=0

Cn|n〉, (8)

with

Cn =
√

N !

n!(N − n)!
ψn

LψN−n
R , (9)
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where ψL and ψR can be interpreted as the condensed wavefunction in each side of the junction
(with |ψL|2 + |ψR|2 = 1). The dynamics of |�〉N follows the standard Schrödinger equation
governed by the Hamiltonian (1)

i
d

dt
|�(t)〉N = H0|�(t)〉N. (10)

The two sides of this equation can be explicitly computed with the help of the following
relations:

âL|�(t)〉N =
√

NψL|�(t)〉N−1, (11a)

âR|�(t)〉N =
√

NψR|�(t)〉N−1, (11b)

nL ≡ N 〈�(t)|â†
LâL|�(t)〉N = N |ψL|2, (11c)

nR ≡ N − nL = N 〈�(t)|â†
RâR|�(t)〉N = N |ψR|2. (11d)

By further using â
†
LâL ≈ 〈

â
†
LâL

〉 = nL = N |ψL(t)|2, justified by the mean-field
approximation, one finds that the product state |�(t)〉N is a solution of the evolution
equation (10) if the amplitudes ψi(t) solve the Gross–Pitaevskii equations for the two-
component order parameter (ψL,ψR):

iψ̇L(t) = [UL + NEC |ψL(t)|2]ψL(t) − KψR(t), (12)

iψ̇R(t) = URψL(t) − KψL(t). (13)

By setting ψi = √
ni/Neiθi and using the conservation of the total number of particles

nL + nR = N , the equations above can be written in terms of the Hamiltonian function (up to
an additive constant)

H(θ, nL) = EC(nL − n̄ − ng)
2 − EJ cos θ, (14)

where the same definitions as before for ng and EJ have been used, together with θ = θL −θR .
This Hamiltonian function describes semiclassical charge oscillations with frequency

ωc =
√

2ECEJ . (15)

Note that the state |�〉N in (8) behaves like a coherent state; indeed, due to the large numbers
involved N 	 n̄ 	 1, we can replace the coefficients Cn of |�〉N by a Poisson distribution so
that in the limit of N large, one can write

|�〉N ≈ |α〉 ≡
∞∑

n=0

[
n̄n

n!
e−n̄

] 1
2

e−inθ |n〉, (16)

which is indeed a coherent state satisfying

b̂|α〉 = α|α〉, α = √
n̄ e−iθ ,

where b̂ is the annihilation operator for a fictitious nonlinear oscillator with eigenvectors |n〉,
â
†
LâR|n〉 = √

N − n b̂†|n〉, âLâ
†
R|n〉 = √

N − n + 1 b̂|n〉.
Hence, the oscillations observed in a SCB might be the result of a semiclassical behaviour
described by the coherent state |�〉N ≈ |α〉, rather than a manifestation of quantum coherence
at the macroscopic level.
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3. SCB with noise: weak coupling limit

From the previous discussion, it follows that there are two possible scenarios to describe
charge oscillations in SCB, namely the quantum phase model, which is based on a purely
quantum description, and the mean-field one which is semiclassical in nature. They both are
qualitatively consistent with the experimental data: if these could be used to measure the
oscillation frequency, a direct discrimination between the two approaches would be possible;
however, the present experimental accuracy does not seem to allow this. Instead, we shall show
that the two approaches give different decoherence patterns when the SCB is weakly coupled
to an environment which acts as a source of noise and dissipation5. In [19] a specific model
of environment has been considered, which required the so-called singular coupling limit
technique; in the following we shall study the effects of a more general source of dissipation,
using the weak coupling limit approach.

We describe the weak coupling of the SCB to an external environment by means of the
total Hamiltonian

H = H0 + HE + λ
(
a1a

†
2 ⊗ B + a

†
1a2 ⊗ B†), (17)

where H0 is the microscopic Bose–Hubbard Hamiltonian (1), HE is the Hamiltonian of
the environment, λ � 1 is a small coupling constant and B is a suitable environment
operator. We shall assume the environment to be in an equilibrium state ρE , with two-point
correlation functions, 〈B†(t)B〉E ≡ TrE[ρEB†(t)B] and similar ones, that decay fast enough
(for details, see [21]). A heat bath, with ρE � e−βHE , is a typical example of environment
fulfilling these conditions: specifically, it can be identified with the cloud of non-condensed
electrons in the two SCB electrodes.

This very general situation provides the setting for the so-called weak coupling limit [21],
a physically consistent and mathematically precise procedure leading to an evolution equation
for the SCB density matrix ρ in Kossakowski–Lindblad form [15–18]

∂ρ

∂t
= −i[H0 + H(2), ρ] + D[ρ]. (18)

The contribution H(2) is an environment induced Hamiltonian correction to the starting system
Hamiltonian H0, whose explicit expression will not be relevant in the following; on the other
hand, the term D describes the non-Hamiltonian effects of the environment on the dynamics
of the SCB, which typically result in dissipation and noise. In deriving (18), we have assumed
to work in the experimentally relevant regime in which the effective Josephson coupling EJ is
of the same order of magnitude of the dissipative effects, that start to become relevant at order
λ2. In this regime, we explicitly find

D[ρ] = λ2
N∑

n=0

{
h(ωn)

(
W †(n)ρW(n) − 1

2
{W(n)W †(n), ρ}

)

+ κ(ωn)

(
W(n)ρW †(n) − 1

2
{W †(n)W(n), ρ}

)}
, (19)

where

W(n) =
√

(n + 1)(N − n)|n〉〈n + 1|, (20)

and

h(ωn) =
∫ ∞

−∞
dt e−itωn〈B(t)B†〉E, κ(ωn) =

∫ ∞

−∞
dt eitωn〈B†(t)B〉E, (21)

5 Within the qubit interpretation, different aspects of decoherence phenomena in SCB behaviour have been discussed
in [22].
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are the Fourier transform of the environment correlations with respect to the
frequencies

ωn = EC[2(n − n̄ − ng) + 1], (22)

where n is, as before, the actual number of Cooper pairs in the island L.6

The stability properties of any initial SCB pure state, ρ = |ψ〉〈ψ |, can be studied using
the master equation (18). Indeed, first note that the difference between two quantum states
can be estimated by looking at the part of one of them that is orthogonal to the other. Thus,
we can quantify the degree of stability of any state ρ by measuring how fast it starts deviating
from itself, i.e. by evaluating the initial rate of variation � of the orthogonal contribution to
itself. Explicitly,

� ≡ d

dt
Tr [(1 − |ψ〉〈ψ |) ρ(t)]

∣∣∣∣
t=0

= −〈ψ |∂ρ(t)

∂t
|ψ〉

∣∣∣∣
t=0

= −〈ψ |D[|ψ〉〈ψ |]|ψ〉, (23)

where in the last equality we have used (18), taking into account that the Hamiltonian
contribution vanishes. Roughly speaking, a generic state is expected to decay exponentially
with a rate given by �, so that the bigger � is, the faster it decays, the less stable it is. In the
specific case under study, we expect to find an appreciable difference between the decay rates
of occupation number (Fock) and coherent states that might shed light on the suitability of the
two discussed models.

Inserting (19) into (23), in the case of an initial Fock state ρ = |n〉〈n| we get

�Fock = −〈n|D[|n〉〈n|]|n〉 = λ2[(n + 1)(N − n)h(ωn) + n(N − n + 1)κ(ωn−1)], (24)

while for the coherent-like states (8) one finds

�coherent = −〈�N |D[|�N 〉〈�N |]|�N 〉

= λ2
N∑

n=0

(n + 1)(N − n){|Cn|2(1 − |Cn+1|2)h(ωn) + |Cn+1|2(1 − |Cn|2)κ(ωn)}.

(25)

Since N 	 n̄ 	 1, following arguments similar to those leading to (16), the contributing
terms to the sum can be approximated as |Cn+1| ≈ |Cn| ≈ 10−4, so that (1 − |Cn|) ≈ 1; as a
consequence, one can write

�coherent ≈ λ2
N∑

n=0

(n + 1)(N − n)|Cn|2[h(ωn) + κ(ωn)]. (26)

To proceed further, we shall consider a very common instance of environment, that of a
heat bath having two-point correlation functions of exponentially decaying form,

〈B†(t)B〉E = 〈B(t)B†〉E = g2 exp(−|t |/τE),

where τE is the characteristic time scale of the environment and g2 ∼ |〈B2〉E| is a constant
measuring the strength of the bath correlations. Recalling the expression of the frequency
ωn in (22), it is convenient to introduce the new integer variable k, by writing n = n̄ + k; at
resonance, ng = 1/2, one then has ωn̄+k = 2ECk. The Fourier transforms (21) can now be
explicitly computed, giving

hk ≡ h(ωn̄+k) = κ(ωn̄+k) =
∫ ∞

−∞
dtg2 e−|t |/τE+iωn̄+k t = 2g2τE

1 + (rk)2 , (27)

6 There is an additional contribution to D that arises strictly at resonance, i.e. when ng = 1/2. For simplicity, we
have omitted it, since it will play no role in the following discussions; indeed, its contribution to the decay rates is
suppressed by a factor 1/

√
n̄ ∼ 10−4 with respect to the dominant one coming from (19) (for further details, see

[25]).
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where

r ≡ τE

τC

= 2ECτE, (28)

with τC ≡ (2EC)−1 being the characteristic time of oscillations due to Coulomb interaction7.
With these results, using the central limit theorem to approximate |Cn̄+k|2 by a Gaussian

distribution8, �coherent in (26) can be cast in the following form:

�coherent ≈ λ2
N−n̄∑
k=−n̄

(n̄ + k + 1)(N − n̄ − k)
2g2τE

1 + (rk)2

e− k2

2n̄√
2πn̄

, (29)

that, in turn, due to the large numbers involved, is well approximated by

�coherent ≈ λ2(2g2τE)n̄(N − n̄)f (
√

n̄r), f (z) ≡ 1√
2π

∫ ∞

−∞
dy

e−y2/2

1 + (zy)2 . (30)

One can similarly evaluate the expression of the decay rate in the case of occupation number
states, obtaining from (24)

�Fock ≈ λ2(2g2τE)n̄(N − n̄). (31)

The integrand in f (z) above is a product of two decaying functions with different characteristic
scales, namely a Gaussian with standard deviation equal to one and a Lorentzian with width
1/z. Thus, in the large z limit the integral is dominated by the Lorentzian. Hence, for√

n̄r 	 1, we get

�Fock

�coherent
= 1

f (
√

n̄r)
∝ √

n̄r, (32)

showing that the decay rate in the case of occupation number states results much larger than
the corresponding one for coherent states.

However, to be experimentally relevant, this result needs to be interpreted within the
actual conditions of a typical setup; in particular, one needs to estimate the magnitude of these
decay rates and compare them with the smallest, characteristic energy scale of the device
under study, i.e. the tunnelling energy EJ .

Indeed, as already mentioned, in order for the noise effects to be observable, the strength
of the interaction describing the coupling of the SCB with the environment should be of the
same order of magnitude of the tunnelling term. Recalling the form of the corresponding
Hamiltonian pieces (1) and (17), this condition roughly means λg ≈ K ,9 or equivalently
λg

√
n̄(N − n̄) ≈ EJ . Then, from the expression (31), one immediately gets the estimate

�Fock

EJ

≈ EJ

EC

r. (33)

The ratio EJ /EC is fixed in any experimental situation. For instance, in the setup described
in [1, 2], one has

EJ ≈ 50 µeV ≈ 1010 s−1, EC ≈ 500 µeV ≈ 1011 s−1,

so that EJ /EC ≈ 1/10. As a consequence, in the relevant regime
√

n̄r 	 1, the decay rate
�Fock might be close to EJ and therefore the effects of the environment visible. In particular,

7 In the experiment reported in [1, 2], the charging energy is around EC ≈ 500 µeV, so that τC ∼ 10−11 s.
8 Substituting (11c) and (11d) in the definition (9), one finds |Cn|2 = N!

n!(N−n)!

(
n̄
N

)n(
1 − n̄

N

)N−n
, since 〈n̂L〉 ≈ n̄.

Using the Stirling formula for the various factorials, one further gets |Cn̄+k |2 ≈ 1√
2π

√
N

n(N−n)
g(k) where, in the limit

N 	 n̄, the function g(k) can be very well approximated by a Gaussian distribution (for further details, see [25]).
9 This estimate comes from imposing 〈HJ 〉 � 〈HI 〉, where HJ is the tunnelling term in (1) and HI is the interaction
term in (17). Indeed, 〈HJ 〉 � K〈âLâ

†
R〉, while 〈λHI 〉 � λ〈B〉〈âLâ

†
R〉 ∼ λg〈âLâ

†
R〉, since g �

√
|〈B2〉|.

7
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by choosing an environment for which r is close to one10 one obtains �Fock ≈ EJ /10, or
equivalently a decay time of order τFock = 1/�Fock ≈ 10/EJ ≈ 10−9 s.

On the other hand, for the coherent states one gets

�coherent

EJ

≈ 1√
n̄

EJ

EC

, (34)

which is independent of r and, in the case of the setup in [1, 2], yields a decay time of order
τcoherent = 1/�coherent ∼ 10−5 s. This means that if the charge oscillations are a manifestation
of macroscopic quantum effects, their damping would become evident after just few oscillation
periods, while if they are semiclassical in nature, they will persist for very long times. In the
specific case of the experiment described in [1, 2], by doubling or tripling the observation time
in presence of a suitably engineered environment, damping of the charge oscillations must be
observed if the oscillations are indeed a manifestation of quantum coherence.

As a final remark, note that the ratio ωc/ωq between the charge oscillation frequencies in
( 15) and (7) behaves as (EC/EJ )1/2; thus, by modifying the experimental conditions so that to
increase the ratio EC/EJ , one can eventually distinguish between the two types of explanation
of the observed charge oscillations through a frequency measure. Nevertheless, the alternative
approach here proposed of adding noise to the device might be, in principle, more efficient in
discriminating between the two models. Indeed, the damping time for Fock states increases
linearly with EC/EJ , while the ratio of the frequencies above only with the square root.

4. Conclusions

Reviewing the phenomenology of charge oscillations in a superconducting Cooper pair box,
we have seen that they might be modelled in two different ways, either as a manifestation
of macroscopic quantum coherence (leading to the widely accepted qubit interpretation)
or as the result of a semiclassical mean-field approach (through a Gross–Pitaevskii like
equation). However, the response of the SCB to external noise, generated by a weakly
coupled environment, is found to be very different in the two models. Both approaches predict
damping of the oscillations, but the decay rate in the case of qubit (Fock) states differs by a
factor

√
n̄r from that of the mean-field (coherent like) ones. In the physically relevant regime√

n̄r 	 1, one then expects the Fock states to decay much faster than the coherent ones.
This result might provide a way to distinguish experimentally between the two possible

interpretations of the observed SCB charge oscillations. The idea is to couple an SCB with
an externally controlled environment, satisfying the conditions of the weak coupling limit
approximation. As soon as the interaction with the environment is switched on and therefore
noise is injected into the nanodevice, damping of the charge oscillations should become
visible if these are a manifestation of macroscopic quantum coherence, as described by the
qubit model; on the other hand, if they survive for long times, this would be an indication of
their semiclassical origin, as described by the mean-field approach.

One can easily evaluate the visibility of the damping effects in the specific setup described
in [1, 2]. For the physically relevant case of a heat bath with r ≈ 1, we have found that the decay
time for occupation number, Fock states can be estimated in about 10−9 s. As a consequence,
if due to macroscopic quantum coherence, the decoherence effects must be visible after about
a few oscillation periods. In the case of coherent states, we have instead obtained a much

10 This choice is compatible with the weak coupling limit. As mentioned before, the application of this procedure
requires that the decoherence time scale of the slow subsystem dynamics τ ≡ 1/� be much greater than both the
characteristic decay time τE of correlations in the environment and the intrinsic time scale of the free system dynamics
τC = 1/2EC . One checks [25] that with the choice r ≈ 1 both conditions are satisfied.

8



J. Phys. A: Math. Theor. 41 (2008) 235304 F Benatti et al

longer decay time of about 10−5 s. Therefore, the possibility of experimentally distinguishing
between the two types of interpretation with already existing setups appears quite realistic.
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